BĐT Holder - Bất đẳng thức và cực trị

#1

Đã gửi 12-10-2013 - 08:34

nghiemthanhbach

Bạn đang xem: BĐT Holder - Bất đẳng thức và cực trị

    $\sqrt{MF}'s\;friend$

  • Thành viên
  • 1056 Bài viết

Cho căn vặn cơ hội c/m bđt holder bậc 3 và cả tổng quát tháo :))



#2

Đã gửi 12-10-2013 - 08:39

bangbang1412

    Độc cô ước bại

  • Phó Quản lý Toán Cao cấp
  • 1668 Bài viết

Thật vậy tao chứng minh :

                                             $(a^{3}+b^{3}+c^{3})(x^{3}+y^{3}+z^{3})(m^{3}+n^{3}+p^{3})\geq (axm+byn+czp)^{3}$ ( hạ căn và phân tách vế tao có : 

                                             $1\geq \frac{axm+byn+czp}{\sqrt[3]{\prod (a^{3}+b^{3}+c^{3})}}$

Theo bất đẳng thức $AM-GM$ tao có 

                                             $\frac{a^{3}}{\sum a^{3}}+\frac{x^{3}}{\sum x^{3}}+\frac{m^{3}}{\sum m^{3}}\geq \frac{3axm}{\sqrt[3]{\prod (\sum a^{3})}}$

Chứng minh tương tự và cộng vế $=>Q.E.D$

Bđt tổng quát chứng minh hoàn toàn tương tự .

Giải hệ phương trình dấu bằng của $AM-GM$ tao thu được đẳng thức Lúc các bộ tỉ lệ . 


$$[\Psi_f(\mathbb{1}_{X_{\eta}}) ] = \sum_{\varnothing \neq J} (-1)^{\left|J \right|-1} [\mathrm{M}_{X_{\sigma},c}^{\vee}(\widetilde{D}_J^{\circ} \times_k \mathbf{G}_{m,k}^{\left|J \right|-1})] \in K_0(\mathbf{SH}_{\mathfrak{M},ct}(X_{\sigma})).$$


#3

Đã gửi 12-10-2013 - 09:22

nghiemthanhbach

    $\sqrt{MF}'s\;friend$

  • Thành viên
  • 1056 Bài viết

Thật vậy tao chứng minh :

                                             $(a^{3}+b^{3}+c^{3})(x^{3}+y^{3}+z^{3})(m^{3}+n^{3}+p^{3})\geq (axm+byn+czp)^{3}$ ( hạ căn và phân tách vế tao có : 

                                             $1\geq \frac{axm+byn+czp}{\sqrt[3]{\prod (a^{3}+b^{3}+c^{3})}}$

Theo bất đẳng thức $AM-GM$ tao có 

                                             $\frac{a^{3}}{\sum a^{3}}+\frac{x^{3}}{\sum x^{3}}+\frac{m^{3}}{\sum m^{3}}\geq \frac{3axm}{\sqrt[3]{\prod (\sum a^{3})}}$

Chứng minh tương tự và cộng vế $=>Q.E.D$

Bđt tổng quát chứng minh hoàn toàn tương tự .

Xem thêm: Hướng dẫn phép nhân ma trận 3x3 cho người mới bắt đầu

Giải hệ phương trình dấu bằng của $AM-GM$ tao thu được đẳng thức Lúc các bộ tỉ lệ . 


Thật vậy tao chứng minh :

                                             $(a^{3}+b^{3}+c^{3})(x^{3}+y^{3}+z^{3})(m^{3}+n^{3}+p^{3})\geq (axm+byn+czp)^{3}$ ( hạ căn và phân tách vế tao có : 

                                             $1\geq \frac{axm+byn+czp}{\sqrt[3]{\prod (a^{3}+b^{3}+c^{3})}}$

Theo bất đẳng thức $AM-GM$ tao có 

                                             $\frac{a^{3}}{\sum a^{3}}+\frac{x^{3}}{\sum x^{3}}+\frac{m^{3}}{\sum m^{3}}\geq \frac{3axm}{\sqrt[3]{\prod (\sum a^{3})}}$

Chứng minh tương tự và cộng vế $=>Q.E.D$

Bđt tổng quát chứng minh hoàn toàn tương tự .

Giải hệ phương trình dấu bằng của $AM-GM$ tao thu được đẳng thức Lúc các bộ tỉ lệ . 

Vậy các bạn chứng tỏ AM-GM 3 ẩn giùm bản thân luôn luôn nha, thực hiện ơn bại :)), tôi chỉ biết chứng tỏ bậc chẵn thôi :(

Quen xài chứ lạ lẫm chứng tỏ huhu

:icon6:  :icon6:  :icon6:  :icon6:  :icon6:  :icon6:  :icon6:

Bài ghi chép và được sửa đổi nội dung bởi vì nghiemthanhbach: 12-10-2013 - 09:59


#4

Đã gửi 12-10-2013 - 11:15

bangbang1412

    Độc cô ước bại

  • Phó Quản lý Toán Cao cấp
  • 1668 Bài viết

Ta sẽ chứng minh $\sum a^{3}\geq 3abc$

Cách $1$ : thay đổi tương tự sẽ thu được 

                                               $(a+b+c)(\sum a^{2}-\sum ab)\geq 0$ hiển nhiên đúng

Cách nhị , áp dụng bdt $AM-GM$ cho 

$a^{4}+b^{4}+c^{4}+d^{4}\geq 2(a^{2}b^{2}+c^{2}+d^{2})\geq 4abcd$

Áp dụng mang đến các số $a^{3},b^{3},c^{3},abc$

Xem thêm: Đơn vị đo khối lượng | Quy đổi đơn vị đo trực tuyến, dễ dàng

Ta có $\sum a^{3}+abc\geq 4abc$ nên $\sum a^{3}\geq 3abc$ 

Bài ghi chép và được sửa đổi nội dung bởi vì bangbang1412: 12-10-2013 - 11:15

$$[\Psi_f(\mathbb{1}_{X_{\eta}}) ] = \sum_{\varnothing \neq J} (-1)^{\left|J \right|-1} [\mathrm{M}_{X_{\sigma},c}^{\vee}(\widetilde{D}_J^{\circ} \times_k \mathbf{G}_{m,k}^{\left|J \right|-1})] \in K_0(\mathbf{SH}_{\mathfrak{M},ct}(X_{\sigma})).$$